PowerShell 2.0
remoting

Ravikanth Chaganti

Learn the basics of PowerShell 2.0 remoting, methods of remoting and how to use remoting to manage

systems in a datacenter.

A layman’s guide to PowerShell 2.0 remoting
Ravikanth Chaganti
Jan Egil Ring

Acknowledgments

Thanks to everyone who read my blog posts on PS remoting and provided feedback. Your
encouragement and support helped me write quite a bit about remoting and now this e-book. Thanks to
Jan Egil Ring (http://blog.powershell.no/) for contributing to appendix B in this updated version of the
ebook.

Disclaimer

The content of this guide is provided as-is with no warranties. You are allowed to use the material
published in this guide any way you want as long as you credit the author. For any questions, you can
contact Ravikanth@ravichaganti.com . All trademarks acknowledged.

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

http://blog.powershell.no/
mailto:Ravikanth@ravichaganti.com

Contents

5 0 5
CHAPTER 1: INTRODUCTION TO REMOTINGcccevvermemmmmmemmmmemmmeeeemeeeeeemeeemeeesessesss 5
TRADITIONAL REMOTING IN POWERSHELLveteeutttteiutteeeitteeesseteeesaseaeessseeesssseessnsssesssssesesssssesesssssesssssseessnssesssnsnessnnsenesnnns 5
OVERVIEW OF POWERSHELL 2.0 REMOTINGttteteutrteesurteeesureresaureeesauseeessuneeessnssesesssseessasseesssnsesesassseeesaseesssnsesesansseeessnnees 6
PowerShell 2.0 remoting requirements ...6
OVERVIEW OF REMOTING CIMDLETS ...eteuvtteeeureeessueeeesausseessseeesasmsesesanssessssssesssssesesanssesssasseesssnsesesansseeesaseesssnsesessnsseeessnnees 7
ENGDIE-PSREMOTING......ccooueeaiieieee ettt ettt s it e e st e et e st e e st e st e e st e s e e eaneeeabneenaeanans 7
DiSABIE-PSREIMOTINGvveeeiieeeeieeeeeee e ettt e e ettt e e ettt e e ettt e e ettt e eestea e e aseaaaassssaeeassesaessesaaassssaeesssssesassssasassenananes 7
INVOKE-COMMIGNG ...ttt ettt e e et e e ettt e e ettt e e et e e e st e e e atteasasteassasstaassasteassasssaesasssnassasseaannnns 7
INEW-PSSESSION ...ttt ettt ettt e e e ettt et e e e ettt e e e et e e e e e e e s ssnn e e e e e eennnnnreeeens 8
L L= T e Y= T (o] o F USSP UPPP PP 8
EXTE-PSSOSSION. ...ttt ettt ettt e e e e ettt e e e e e ettt et e e e e ettt et e e e e e et nn et e e e e e nrnnreeeens 8
Ot O AN Y=L X (o] FO OO TSP OUT S PPPPPPN 8
Remove-PSSession .8
IMPOIE-PSSESSION.coeeieeeeeeee ettt ettt et e e st e ettt e sttt e st e e ettt esesneeesaaneeeesnneeenanns 8
EXPOIE-PSSESSION .ottt ettt ettt et et et a e araaaes 8
Register-PSSESSIONCONFIGUITLIONcc..eeeueeeiieieieeeieeee ettt ettt ettt e et e st e e bt e st aenseeebeeennee et 9
Unregister-PSSessionConfiguration9
Disable-PSSeSSIONCONFIGUIGLION.........cc.eeeeeiiieeeie ettt ettt e ettt e et e st e e bt e st eesseeeteeenseenane 9
ENQDble-PSSeSSIONCONFIGUIGLIONc...uueeeeeeeeeiiieeeiieeeeteee ettt e eettae e et taaaestsa e e e aataaaeatsaseaatseaesssssaassssssaeatseaannes 9
GEt-PSSESSIONCONFIGUIGLION.veveeeeieeesieee et eeetee s etee e e ettt e e et e e e ettt e e e sttt e sasteaesasseaesanseaassassnassssenasnssnsesansenes 9
R AN XX (o [0e ¢} [1 1o 11 (o) IO 9
TEST-WSIMON. ...ttt ettt e e ettt e e e s e st e e e s e s bt e e e s e s an et e e e e e sennnnee 9
ENGDIE-WSMGANCIEUSSP ...ttt ettt ettt ettt et e e ettt e e st e e et e e asatbeaessteeesaseaeenabseaenans 9
DiSADIE-WSMGANCIEUSSP ...ttt ettt ettt e s et e s e st e st asase e sateasaseesateesaseesaseanaseans 10
CHAPTER 2: ENABLE/DISABLE POWERSHELL REMOTING........cccccerrernerrecsnessessanessessnsssssssnesssssanesssssnssssssanessassnnesss 11
TEST POWERSHELL REMOTING c...teeeeuutteesurteesemteeeseusteessaneeesenseeesamnneessasaeesensesesanneeeesaneeesesnsesesansneessanenesennresesannneessanneeess 12
REMOTING IN WORKGROUP ENVIRONMENTS ...ctetteeuuutetereeesasauureseeeeesaaasneseeesesasaausesteesesssannnsenesesssasanssesesesssasansenesesssenannnes 13
On Windows XP
Modify WSMAN trUuStEA NOSES SELLINGceveeeeeeeieeeeee e ettt eee ettt e e e e ettt e e e e e sttt aaaeeasstsssaaaaaeesssssssenaaas 13
REMOTING IN MIXED DOMAIN ENVIRONMENT c.uuvttterurrtesesureresasreeesanseeessuresesasseessansnessansesesanssesesanssesssnnsnesssnsesesansneessanseesas 14
DISABLE REIMOTING -.vvtteteeeeaauuustteeeessaauunseseeessaaaausseseeeeesaaaasseseeeeesesaunseeeeeeeaesansaseeeeeaesaannsseteeesesaaannsateeeessaaannraneeasesanannsen 14
ENABLE REMOTING FOR ONLY A SPECIFIC NETWORK ADAPTER ...ceeuvtttesureeeesureresasreeesannreessneeesasssesesansesssnseesssnsesesansneessanseesas 14
REMOTING IN AN ENTERPRISE ..uuvteeeutteeeauteeessuureessusaeessuseeesssssesssasssesssusesessnsssesssssseessnsesessssssessssssesssasseessssseeessssseessnseeens 15
SUMMARY L.ttt eitteeeiteee s ettt e siseeesur e e e s abeteesanseeesanbeeesaas e e e e san s e e e e s b et e s mn e e e e sas e e e e e s b et e s nn e e e e aa R e ee e e nreeesnnn e e e e reeeeenreeennnees 15
CHAPTER 3: EXECUTE REMOTE COMMANDS.........cccovvmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmsss 16
RUN SCRIPT BLOCKS ON LOCAL OR REMOTE COMPUTER ...cceeuttterautreeesanreeessureresasreeesanneeessnneeesasnnesesannsesssnseesssnsesessnsneessanseesss 16
RUN SCRIPT FILES ON REMOTE COMPUTERSctteteeeiuuterteeeeeaaauueeeeeeesesauseeteeeesasaaussseeeaesssaannssetesesssasannsesesesssasannsenesesssenannne 16
PASSING VARIABLES TO REMOTE SESSION «....tttesautrteesneresesureresasneeesanseesssunesesansseeesansneessnsesesannsesesannsesssansnesssnsesesansneessanneesan

USING PERSISTENT SESSIONS WITH INVOKE-COMMAND
RUNNING REMOTE COMMAND AS A BACKGROUND JOB

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

SPECIFYING CREDENTIALS REQUIRED FOR REMOTING . ..ceeeteiuurrrereteseraunnrereeesssaaunnreneeesssasnnreneeesesesanmnnneeesesesansnsneeesesssansnneneees 18

SUMMARY
CHAPTER 4: INTERACTIVE REMOTING SESSIONScccovvimmimmmmmmmmmenmeeeeeeeeeeeeeeeemseesss 20
STARTING AN INTERACTIVE REMOTING SESSIONvvttteteeeiuuuntteeeesesaauueseteeesssaaunseaeeesssesausseseeeeesesannsssseesesssanssseeeeesesasannseeeees 20
EXITING AN INTERACTIVE SESSION ..euuvvteeeureeessurteeesuseeessureresansseeesauseeessusesessnssesesasssessssesesanssesessnssesssnsssesssssesesssseeessasseeens 21
USING PERSISTENT SESSIONS WITH INTERACTIVE REMOTING c...evveeeeuerteeeurreeestaeessnuseeesssseessassesssssseeesssssesssssssesssssseessssseessnssees 21
STARTING INTERACTIVE REMOTING WITH AN EXISTING SESSIONeeeruvrteeeurereraunreeesnseesanureresasseessseeesanssesessnseesssnsenesssssesessnnees 21
MELNOA 1: USING SESSION 10 ...ttt ettt ettt s e st e st e et e steenaneens
Method 2: Using session instance Id
MEtNOd 3: USING SESSION MM ...ttt ettt ettt et sat e st e st e st e s teesteesneesaseenaneens
Method 3: USING —SESSION PAITIMETENueeeeieeeeeeieieeeiieeeseeeee sttt e eettaeaesttseaeaetsssessssaaeastsesaessssssessssssssssanaans 22
SUMMARY <..tteteeutteeesutteeestteeesauseesassteeeeassseeesssaeessseeesansseesssseessssesesasssessssseessnssesssnsssesssnsseesanssessssssesssnsseesnnsseeesnsnes 22
CHAPTER 5: IMPLICIT REMOTING IN POWERSHELLccocuvttimmmmmmmemnnennnnennneenneeeeeeeseseesessesssssssssssssssssssssssssssssssssss 23
WHY IMPLICIT REMOTING? eeutteteeeureeeesuteeesasseeesssseesesssseesssssesesssseesssssesesasssssssnsssesssssssesssssssssnssnssesssesesansseesssseesesssseesnnns 23
CREATING AN IMPLICIT REMOTING SESSION ..uuvvtteruurteeeuteeesnureeesauseeessureeesausseessseeessnssesesasseessasesesannsesessnssesssnsseessnsseeesssees 23
AVOIDING NAME CONFLICTS WHILE IMPORTING A REMOTE SESSION ..ceettteuuuetrtteesesasuurareeeeesssasserteesesssasssseaeeessssssnssseesesssensnnnes 24
IMPORTING MODULES AND SNAP-INS TO LOCAL SESSION ..uuvteeeaurteesureeeesureeesasseeesauseeessseeesssssesesassesssasseesssssesessssneessanseeens 24
LIMITATIONS OF IMPLICIT REMOTING ..t euuuutttteeessesuusreteeesesssassateeesesssasssseeesessssssssseessesssasssssssesesssasssseseeessssssnseseeesssessnnnes 25
SUMMARY .nitttteeitteeesitteeestteeeseusteesaubeeesaasteeesanseeesabeeeseaateeesasbaeesaabeeeeaaseeeesanstaesaabeeesansbeeesnsaeeennbeeesansbeeesnneeeennbenenanns 25
CHAPTER 6: SAVING REMOTE SESSIONS TO DISK....cciitttuuuuiiiiniiiimmmnnsssniiimnmmmsssssssiimmmssssssssiimsssssssssssissssssssssssssnes 26
EXPORT REMOTE SESSION TO A MODULE ON DISK..uuuuttttteeseeesuttetteesesesauteeeeeeesesaunneteeeesesaannnseteeesssasnnsenesesssasannssneeeessesannnes 26
IMPORTING A MODULE SAVED ON DISK
LIMITATIONS OF EXPORT=-PSSESSION ... eeiiitittieeeieiiiettee e e e ettt e e e e e sttt e e e e e sttt e e e e e saanar e teeeeesannnbaeeeeeesaannreneeeeesenannnes
SUMIMARY .. teititteteeessesiutreteeessessusstaaeeesssasssssaeeessssssssssssaesesssssssssseesesssnsssssnesesssssssssssseessssssssssseessssssssssseeeeesssnssnssenees
Y3 28
CHAPTER 7: UNDERSTANDING SESSION CONFIGURATIONSccctvtuuiiiiiiinmnmnnssssniimmmsmssssssssimmsssssssssssssssssssssssssssnes 28
WHAT IS A PS SESSION CONFIGURATION? ...ceeteuutttesurteeenuteeesasureeesausteesauseeessssseeesausseesssseeesassseeesasseesssssesessnsseessanseesenssenennns 28
CMDLETS AVAILABLE TO MANAGE SESSION CONFIGURATIONS
CREATING A NEW SESSION CONFIGURATION 1...uttttesuutieeeuteeesausreeesuseeeasuteeesausseessaseeessnstesesansseessasseesanssesessnsseessnseeessnnseeesssees
LIST AVAILABLE SESSION CONFIGURATIONS ...vvveeeeseesunrereeeseessansunreeesessssnsssnsessesssasssnseessesssssssssssesesssassssssssessssssssssnssesssensnnnes
FrOm the [0CAI COMPULETeeeeeeeeeeeee ettt e e e ettt e e e e e ettt aaaeeeaa s tabaaaaaeeasstsssaaaaeessssssssenaans

From a remote computer
CUSTOM PERMISSIONS AND PS SESSION CONFIGURATIONS

INVOKING A CUSTOM SESSION CONFIGURATIONcuuviiueiittenteenteete ettt e st st et eabe et st st b e b et et eanseaeeeae et e e be et e enbeenneeanes
DISABLE A SESSION CONFIGURATION ...uviiutieuiiettesteeiteesteesteesteese et sae et et et e e st e et e s aa e s aa e s he e s be e be e b e e abeebseebe e ba e be e beeabesanesanes
DELETE A SESSION CONFIGURATION. ...ccuvteutieutieuteiteeitee it este et et e eae e st st et et e et e s aaesae e she e s be e beeabeeaesebesebs e be e beenbeeabesanesanes
SUMMARY ..ottt ettt h e bbb b e ae e e he e b e e b e e b e e b e e R e e e e s he e he e b e b e R b e R e e b e e b e e b e e b e e b e s ae e s he e he e beeans
CHAPTER 8: USING CUSTOM SESSION CONFIGURATIONSccutiiiietiiinnnininsentiissnnsssssnessssnsessssssssssssanssssssnnenes 32
CHAPTER 9: INTERPRETING, FORMATTING AND DISPLAYING REMOTE OUTPUTcccievveiiiiienenncneennncneenncnnnenn, 35
HOW REMOTE OUTPUT COMES OVER TO LOCAL COMPUTER?......oitiiuiiiiiniiiiiie ittt sttt st 36
FORMATTING REMOTE OUTPUT ..uuiitiitectieitesite sttt ste et ettt st be bbb e et e s aa e s he e s he e s be e be e b e e abeebs e e be e b e e be e beeabesaneeanas 37

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

CHAPTER 10: USING CREDSSP FOR MULTI-HOP AUTHENTICATIONcccovvmmmmiiiiiiinnnnnnineniinnnnnnnneeensssssennsseeensns 39

DELEGATING CREDENTIALS ...ttt s 40
SUMMARY ...eeieiiiiiettetees e et eeeeeeesaamr et e e eeseaaasre et eeeesesa s s e e et e eessaa s nnr e e e eeeese s nnsaneeeee e e s nnran et eeeeesannnr e e et eeeseannnreneteeesennnnes 42
APPENDIX A: FREQUENTLY ASKED QUESTIONS.cciiiiiiiimmiiieiiiiisinnniieeeiisssssnnnieeesssssssssssseeesssssssssssssssssssssssssssnne 43
APPENDIX B: ENABLE POWERSHELL REMOTING USING GROUP POLICYccovvvummriiiriinnnnnnnnnniiiisnsnnnnneeninsssmnnnnne 44

- A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

Partl

Chapter 1: Introduction to remoting

Traditional remoting in PowerShell

A few cmdlets in PowerShell support accessing information on a remote system. These cmdlets have a —
ComputerName parameter. For example the following cmdlets support the computername parameter
and hence can be used to access information from a remote computer.

o Get-WmiObject

e Invoke-WmiMethod
e Limit-EventlLog

e Set-Service

e Set-Wmilnstance

e Show-EventlLog

e Stop-Computer

e (Clear-EventlLog

e Get-Counter

o New-EventlLog

e Register-WmiEvent
e Remove-EventlLog

e Remove-WmiObject
e Restart-Computer

e Get-Eventlog

e Get-HotFix

e Get-Process

e Get-Service

e Get-WinEvent

The remoting capability of these cmdlets is independent of PowerShell. It is up to the cmdlet author to
implement the remote access using methods such as remote procedure call (RPC), etc. This method of
remoting can be called traditional remoting or classic remoting.

One obvious disadvantage is that not all PowerShell cmdlets implement this type of remoting. So, for
example, if you want to execute Get-PSDrive or Get-Childltem remotely on a different computer, it is not
possible. This is where the new PowerShell 2.0 remoting feature plays an important role. So, throughout
this guide, whenever we refer to remoting, we refer to the new remoting technology but not traditional
or classic remoting methods.

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

Overview of PowerShell 2.0 remoting

One of the most exciting and important features of PowerShell 2.0 is the remoting capability. PowerShell
remoting enables management of computers from a remote location. Remoting is built on top of
Windows remote management (WinRM)'. WinRM is Microsoft’s implementation of WS-Management®
protocol.

This feature enables what is known as Universal Code Execution Model®in Windows PowerShell 2.0.
UCEM means that whatever runs locally should run anywhere. PowerShell remoting also lets you import
remote commands in to a local session — a feature known as implicit remoting and also enables you to
save or export these imported commands to local disk as a module for later use. There are bunch of
other features such as interactive sessions, etc. We will look in to all these features -- one thing at a time.

PowerShell remoting allows for multiple ways of connecting. These ways include interactive (1:1), fan-
out (1: many), and fan-in (many: 1 by using the IIS hosting model, for example, Quest Software’s
MobileShell*). This guide will walk though each of these ways and explain how to configure your system
for these scenarios.

PowerShell 2.0 remoting requirements
To enable PowerShell remoting, all computers participating in remote management should have the
following software

1. Windows PowerShell 2.0
2. NET framework 2.0 SP1 or later
3. Windows Remote Management (WinRM) 2.0

All of the above are installed by default on Windows 7 and Windows Server 2008 R2. However, earlier
versions of Windows will require you to download the updates from Microsoft website and install them

yourself.

PowerShell 2.0 and WinRM 2.0 are included as a part of Windows Management Framework download

and are available for Windows XP, Windows Server 2003, Windows Vista and Windows Server 2008.
WinRM 2.0 and PowerShell 2.0 can be installed on the following supported operating systems

Windows Server 2008 with Service Pack 1
Windows Server 2008 with Service Pack 2
Windows Server 2003 with Service Pack 2
Windows Vista with Service Pack 2
Windows Vista with Service Pack 1
Windows XP with Service Pack 3

ok wnN P

! WinRM: http://msdn.microsoft.com/en-us/library/aa384426(VS.85).aspx

? WS-Management: http://msdn.microsoft.com/en-us/library/aa384470(VS.85).aspx
* UCEM as explained by Jeffery Snover: Universal Code Execution Model

* MobileShell

n A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

http://support.microsoft.com/kb/968929
http://msdn.microsoft.com/en-us/library/aa384426(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa384470(VS.85).aspx
http://blogs.msdn.com/powershell/archive/2008/08/19/v2-interview-universal-code-execution-model.aspx
http://powergui.org/entry.jspa?externalID=2611&categoryID=299

7. Windows Embedded POSReady 2009
8. Windows Embedded for Point of Service 1.1

PowerShell 2.0 remoting is supported only on the operating systems listed above.

To be able run scripts and commands on remote computers, the user performing remote script
execution must be

e a member of the administrators group on the remote machine OR
e should be able to provide administrator credentials at the time of remote execution OR
e should have access the PS session configuration on the remote system

For a complete discussion on PS Session configurations refer to chapter << >>.

Also, on client OS versions of Windows such as Windows Vista and Windows 7, network location must
be set either to Home or Work. WS-Management may not function properly if the network location for
any of the network adapters is set to public.

Overview of remoting cmdlets

This section provides a quick overview of some of the important cmdlets that are used in PowerShell
remoting. This list will also include cmdlets that are not directly used within remoting but help configure
various aspects of remoting. The knowledge of some of these cmdlets such as WSMan cmdlets is not
mandatory for basic usage of PowerShell remoting. Subsequent chapters will discuss these cmdlets in
detail.

Enable-PSRemoting

The Enable-PSRemoting cmdlet configures the computer to receive Windows PowerShell remote
commands that are sent by using the WS-Management technology. This cmdlet will be the first one to
run if you want to use PowerShell 2.0 remoting features and needs to be run just once. This cmdlet
internally calls Set-WSManQuickConfig to configure WinRM service, enable firewall exceptions for WS
Management and finally enables all registered PowerShell configurations.

Note: You need to enable PowerShell remoting only if you want the computer receive commands from a
remote machine. To only send commands to a remote machine, you don’t need to enable PowerShell
remoting.

Disable-PSRemoting

The Disable-PSRemoting cmdlet disables all PowerShell session configurations on the local computer to
prevent the computer from receiving any remote commands. You will have to manually stop the WinRM
service if you don’t want the service to be running after you disable PowerShell remoting.

Invoke-Command
The Invoke-Command cmdlet runs commands on a local or remote computer and returns all output
from the commands, including errors. With a single Invoke-Command command, you can run commands

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

on multiple computers. This cmdlet — in its default form — opens a session for running a command
against a remote computer and closes it once the execution is complete. This method may be slow and
can be worked around by specifying pre-defined session information.

New-PSSession

Invoke-Command cmdlet supports specifying an existing session to enhance the speed of overall
command execution. By specifying an existing session, we eliminate the need for creating/destroying
the sessions on the fly. New-PSSession cmdlet can be used to create a persistent connection to a remote
computer. By creating a persistent session, we will be able to share data, such as a function or the value
of a variable between different commands executing within the PSSession.

Enter-PSSession

Enter-PSSession cmdlet starts an interactive session with a single remote computer. During the session,
the commands that you type run on the remote computer, just as though you were typing directly on
the remote computer. You can have only one interactive session at a time. You can specify the PSSession
you created using New-PSSession as a parameter to this cmdlet.

Exit-PSSession
Exit-PSSession exits an interactive PS Session created using Enter-PSSession cmdlet.

Get-PSSession

The Get-PSSession cmdlet gets the Windows PowerShell sessions (PSSessions) that were created in the
current session. This cmdlet gets all the PSSessions returns all the PSSessions in to a variable when no
parameters are specified. You can then use the session information with other cmdlets such as Invoke-
Command, Enter-PSSession, Remove-PSSession, etc.

Remove-PSSession

The Remove-PSSession cmdlet closes PS session(s). It stops any commands that are running in the
PSSessions, ends the PSSession, and releases the resources that the PSSession was using. If the
PSSession is connected to a remote computer, Remove-PSSession also closes the connection between
the local and remote computers.

Import-PSSession

Import-PSSession cmdlet uses the implicit remoting feature of PowerShell 2.0. Implicit remoting enables
you to import commands from a local/remote computer in to an existing PS session and run those
commands as if they were local to the session.

Export-PSSession

The Export-PSSession cmdlet gets cmdlets, functions, aliases, and other command types from another
PSSession on a local or remote computer and saves them to local disk as a Windows PowerShell module.
We can now use the Import-Module cmdlet to add the commands from the saved module to a PS
Session.

m A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

Register-PSSessionConfiguration

Any PS session created using Invoke-Command or New-PSSession or any other PowerShell remoting
cmdlet for that matter uses the default PS Session configuration as specified in the
SPSSessionConfigurationName variable. PS Session configuration determines which commands are
available in the session, and it can include settings that protect the computer, such as those that limit
the amount of data that the session can receive remotely in a single object or command. So, you can use
the Register-PSSessionConfiguration cmdlet creates and registers a new session configuration on the
local computer.

Unregister-PSSessionConfiguration

The Unregister-PSSessionConfiguration cmdlet deletes registered session configurations from the
computer. It is possible to delete the default PSSession configurations (Microsoft.PowerShell or
Microsoft.PowerShell32) using this cmdlet. In such a case, you can use Enable-PSRemoting cmdlet to re-
create and register the default PS Session configurations.

Disable-PSSessionConfiguration

Disable-PSSessionConfiguration disables a registered PS Session configuration. Remember, this only
disables the configuration but not un-register or delete the information from local computer. These
disabled session configurations cannot be used to establish a remoting session.

Enable-PSSessionConfiguration
The Enable-PSSessionConfiguration cmdlet re-enables registered session configurations that have been
disabled by using the Disable-PSSessionConfiguration cmdlet.

Get-PSSessionConfiguration
The Get-PSSessionConfiguration cmdlet gets the session configurations that have been registered on the
local computer.

Set-PSSessionConfiguration
The Set-PSSessionConfiguration cmdlet changes the properties of the registered session configurations
on the local computer.

Test-WSMan

PowerShell remoting requires WinRM service to be running on the remote machines. You can use Test-
WSMan cmdlet to quickly check if you can establish a remoting session with other computers. If WinRM
is not enabled on remote machine, you can safely assume that PowerShell remoting is not enabled.
However, you cannot assume that PowerShell remoting is enabled just by verifying that WinRM service
is running. Remember, this cmdlet checks only for WinRM service and remoting requires many other
components to function.

Enable-WSManCredSSP

PowerShell remoting supports CredSSP authentication and the same can be enabled by using Enable-
WSManCredSSP cmdlet. The Enable-WSManCredSSP cmdlet enables CredSSP authentication on a client
or on a server computer. When CredSSP authentication is used, the user’s credentials are passed to a

- A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

remote computer to be authenticated. This type of authentication is designed for commands that create
a remote session from within another remote session. For example, you use this type of authentication
if you want to run a background job on a remote computer.

Disable-WSManCredSSP
The Disable-WSManCredSPP cmdlet disables CredSSP authentication on a client or on a server computer.

There are other WSMan cmdlets introduced in PowerShell 2.0 such as Connect-WSMan, Disconnect-
WSMan, Get-WSManlnstance, New-WSManlnstance, New-WSManSessionOption, Remove-
WSManlnstance and Set-WSManlnstance. These cmdlets are not really meant for PowerShell remoting
but we will discuss them as required.

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

Chapter 2: Enable/Disable PowerShell remoting

Remoting in PowerShell 2.0 can be enabled by just running the following cmdlet in an elevated
PowerShell prompt

Enable-PSRemoting

Yes. That is it. You will be asked to respond to a couple of questions — based on OS architecture — as
you see in the screenshot here.

PS C::\Windows~system32> Enable-P5Remoting

WinRM Quick Conf iguration
R¥?qing cgmgand "Set—WSManQuickConfig" to enable this machine for remote management through WinRM service.
his includes:
1. Starting or restarting (if already started> the WinRM service
2. Setting the WinRM service type to auto start
3. Creating a listener to accept requests on any IP address
4. Enabling firewall exception for WS-Management traffic (for http onlyd.

Do you want to continue?

[¥] Yes [A] Yes to All [N] No [L] Mo to All [5] Suspend [?] Help {default is "¥">: A
WinRM already is set up to receive requests on this machine.

WinRM has heen updated for remote management.

Created a WinRM listener on HITP://% to accept WS-Man requests to any IP on this machine.
WinRM firewall exception enabled.

Conf irm

fire you sure you want to perform thisz action?

Performing operation "Registering session configuration' on Target "Session configuration "Microsoft._Pouwer8helli2" is
not found. Running command “"Register 3333310n00nf1gurat10n Microsoft.PowerShell32 -processorarchitecture xB6 —force"
to create "Microsoft._PowerShell32" session configuration. This will restart WinRM service."

[¥]1 Yes [A] Yes to A1l [N]1 No [L]1 Mo to A1l [51 Suspend [?1 Help {default is "¥">: A

PS5 C:sWindowsNsystem32>

Figure 1 Enable Remoting

The following things happen when you run this cmdlet.

WinRM service gets enabled and startup type is set to auto start.
WinRM listener gets created to accept remoting requests on any IP addresses assigned to local
computer

3. Windows firewall exceptions for WinRM service will be created. This is essentially the reason
why network location cannot be set to public if you want to enable PS remoting. Windows
firewall exceptions cannot be enabled if the network location is set to public.

4. Enables all registered PS session configurations. We will talk about this in detail later.

By default, WinRM only enables http transport for accepting remoting requests. You can manually
enable https transport using either winrm command or New-WSManIntance cmdlet. For now, let us not
overwhelm with so much information. We will look at this in part 2 of this guide.

Note

By default, PowerShell remoting uses port number 5985 (for http) and 5986 (for https). This can be
changed by modifying wsman:\Localhost\listener\listener*\port to a different value using Set

Iltem cmdlet. However, beware that this will change port number for every WinRM listener on the
system.

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

You should always use the more comprehensive Enable-PSRemoting cmdlet. You can use -force
parameter along with this cmdlet to silently enable remoting.

Trivia
PowerShell remoting cannot be enabled remotely ©

Test PowerShell remoting
You can use the Enter-PSSession cmdlet to test if remoting is enabled on the local machine or not.

Enter-PSSession -ComputerName localhost

If remoting is enabled and functional, you will see the prompt changing to something like this

PSS C-sxMWindowsssystem32> Enter—PS55ession —ComputerMame LocalHost

[localhost]l: PS8 C:slUsersSAdminsDocuments

Figure 2 Enter-PSSession on localhost

Note

A PowerShell session (PS Session) is an environment to run the remote commands and scripts.
PowerShell 2.0 provides various cmdlets to manage these sessions. To see a list of all PSSession cmdlets,
use Get-Command —noun PSSession.

There is also a New-PSSessionOption cmdlet to change default behavior of a PS session. New-PSSession
and Enter-PSSession cmdlets have a parameter, -sessionOption, to specify custom session options. You
can use this to specify options such as

IdleTimeOut

Determines how long the PSSession stays open if the remote computer does not receive any
communication from the local computer, including the heartbeat signal. When the interval expires, the
PSSession closes.

OpenTimeOut
Determines how long the client computer waits for the session connection to be established. When the
interval expires, the command to establish the connection fails.

OperationTimeOut
Determines the maximum time that any operation in the PSSession can run. When the interval expires,
the operation fails.

SkipCACheck
Specifies that when connecting over HTTPS, the client does not validate that the server certificate is
signed by a trusted certification authority (CA).

SkipCNCheck
Specifies that the certificate common name (CN) of the server does not need to match the hostname of

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

the server. This option is used only in remote operations that use the HTTPS protocol.

SkipRevocationCheck
Does not validate the revocation status of the server certificate.

Remoting in workgroup environments

You will not be able to connect to a computer in workgroup just by running Enable-PSRemoting cmdlet.
This is essentially because the security levels on a workgroup joined computer are more stringent than
on a domain joined computer. So, on workgroup joined computers, you need to enable a few more
things before you can create remoting sessions.

On Windows XP

You need to make sure the local security policy to enable classic mode authentication for network
logons. This can be done by opening “Local Security Policy” from Control Panel -> Administrative Tools.
Over there, navigate to Local Policies -> Security Options and double click on “Network Access: Sharing
and Security Model for local accounts” and set it to classic.

& Local Security Settings

File Action Wiew Help

B
@ Security Setkings Palicy Security Setting
(8 Account Policies Interactive logon: Require smart card Mot defined
=-(@ Local Po.licies_ Interactive logon: Smart card removal behavior Mo Action
% E;I::t;;::ctz Assigrimer MicrosoFt network client: Digitally sign communications (always) Disabled
MicrosoFt nietwork client: Digitally sign communications (if server agrees) Enabled

m Security Oplions
(L1 Public key Policies
(L] 5oftware Restriction Polici

MicrosoFt network client: Send unencrypted password to third-party SMB servers Disabled
MicrosoFt network server: Amount of idle time required before suspending session 15 minutes

g IP Security Policies on Loz MicrosoFt network server: Digitally sign communications {always) Disabled
MicrosoFt network server: Digitally sign communications {if client agrees) Disabled
MicrosoFt network server: Disconnect clients when logon hours expire Enabled
Network access: Allow anonymous SIDfMame translation Disabled
Network access! Do nok allow anonymous enumeration of SAM accounts Enabled

Network access: Do not allow anonymous enumeration of 5A4M accounts and sh.., Disabled
Network access: Do not allow storage of credentials or (MET Passports for net... Disabled

Network access: Lek Everyone permissions apply to anonymous users Disabled
Network access: Mamed Pipes that can be accessed anonvmousky COMBMAR, COMMGD.
Network access: Remately accessible registry paths SwstemiCurrentCon. ..
Network access: Shares that can be accessed anonvmously COMCFG, DRSS

i ating and security model for local accounts local users ...
Network securiby: Do nok stare LAN Manager hash value on next password cha... Disabled
Network security: Force logaff when lagon hours expire Disabled
(@1 | ssmil mmimt ikt s L AR Bl mmmie =t bbb ki, L 1] A B BTN

Figure 3 Windows XP security policy change

Modify WSMan trusted hosts setting
On all the workgroup joined computers — including Windows XP, Windows Vista and later — you need to
add the IP addresses of all remoting clients to the list of trusted hosts. To do this,

Set-item wsman:localhost\client\trustedhosts -value *

Using * as the value will add all computers as trusted hosts. If you want to add only a specific set of
computers,

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

Set-item wsman:localhost\client\trustedhosts -value Computerl,Computer2

If you want to add all computers in a specific domain,

Set-item wsman:localhost\client\trustedhosts -value *.testdomain.com

If you want to add an IP address of a remote computer to the trusted hosts list,
Set-item wsman:localhost\client\trustedhosts -value 10.10.10.1

Once the above changes are made, you can use Enable-PSRemoting cmdlet to enable remoting on these
workgroup joined computers.

Remoting in mixed domain environment

By default, a user from a different domain cannot connect to a computer in another domain even when
the user is a part of local administrators group. This is because remote connections from other domains
run with only standard user privileges.

To work around this, you can change the LocalAccountTokenFilterPolicy registry entry (set it to 1) to
allow members of other domain to remote in to the local computer.

new-itemproperty -name LocalAccountTokenFilterPolicy -path *
HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System -propertyType DWord -value 1

Disable remoting

You can use Disable-PSRemoting to disable remoting on the local computer. Disable-PSRemoting will
only disable the session configurations. This will *not* remove all the changes done by Enable-
PSRemoting. This includes leaving the WinRM service in enabled state and leaving all the listeners
created to enable PS remoting. You will have to manually undo these changes if they are not required by
any other component or service on the local computer.

If no other service or components on the local computer need WinRM service, you can disable WinRM
service by running

Set-Service winrm -StartupType Manual
Stop-Service winrm

To remove all WinRM listeners listening on default PS remoting port (5985)

Get-Childltem WSMan:\localhost\Listener —Recurse | Foreach-Object { S_.PSPath } | Where-Object { (Get-ltem
"S \Port").Value 5985 } | Remove-ltem

Enable remoting for only a specific network adapter

When you enable remoting on a computer using Enable-PSRemoting cmdlet, an http listener will be
created to listen for remoting requests on all IP addresses on the local computer. This may not be a
great security practice in an enterprise.

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

http://www.ravichaganti.com/blog/?p=1060

For example, you have an Internet facing server with two network connections. One — obviously —is the
Internet connection and a second one connecting to your internal network. You don’t need remoting be
enabled on the network adapter connected Internet. But, since you used Enable-PSRemoting cmdlet,
remoting will be enabled and there is a WinRM listener on the Internet facing network too. So, how do
we disable remoting on the Internet facing adapter?

Enable-PSRemoting is a comprehensive cmdlet that does lot of things for you in one shot. This is also the
recommended way to enable remoting. So, if we need to disable remoting on a particular IP address, all
you need to do is remove the WinRM listener create by Enable-PSRemoting cmdlet and re-create your
own listener for a specified IP address.

We use Remove-WSManlnstance and New-WSManlInstance cmdlets to do this. You can also use winrm
command-line to achieve this. It is just a preference.

To remove the http listener created by Enable-Remoting,

Remove-WSManlnstance winrm/config/Listener -SelectorSet @{Address="*";Transport="http"}

This will remove the listener.

Now, to re-create the http listener on a specified IP address

New-WSManlnstance winrm/config/Listener -SelectorSet @{Address="IP:192.168.100.2";Transport="http"}

Once this listener is created successfully, you need to restart the WinRM service using Restart-Service
cmdlet. From this point onwards, system will listen only on 192.168.100.2 IP address for any remoting
requests.

You can follow the same approach for HTTPS transport too. However, you will have to specify the
CertificateThumbPrint.

Remoting in an enterprise
To enable remoting on multiple computers in an enterprise or domain environment, you can use group
policy’. For more information on this, refer to Appendix B: Enable PowerShell remoting using group

policy

Summary

In this chapter, we looked at how to enable remoting for basic usage. We also looked at how to
configure computers in a workgroup and mixed domain environment to participate in PowerShell
remoting. Beware that disabling remoting won’t undo changes done by Enable-PSRemoting. If remoting
is not required on the local computer, you should manually undo all the changes. This is a good security
practice. There are few more things you should be aware of while configuring a computer for remoting.
We will look at each of these in detail in part 2.

> http://technet.microsoft.com/en-us/library/dd347642.aspx

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

http://technet.microsoft.com/en-us/library/dd347642.aspx

Chapter 3: Execute remote commands

Within remoting, there are a couple of ways to run commands or scripts on a remote machine.
This includes Invoke-Command cmdlet and interactive remoting sessions. These two methods
deserve a detailed discussion for each and hence we will see Invoke-Command method in this
chapter and discuss interactive remoting in the next chapter.

Once you have enabled remoting on all your computers, you can use Invoke-Command cmdlet to run
commands and scripts on local computer or on remote computer(s). There are many possible variations
of this cmdlet.

Run script blocks on local or remote computer
You can invoke a command on local or remote computer(s) using the below method

Invoke-Command -ComputerName SP2010-WFE -ScriptBlock {Get-Process}

The ScriptBlock parameter can be used to specify a list of commands you want to run on the remote
computer. ComputerName parameter is not required for running commands on the local machine. If
you want to run the same command on multiple remote computers, you can supply the computer
names as a comma separated list to ComputerName parameter or use a text file as shown in the
example here

Invoke-Command -ComputerName SP2010-WFE, SP2010-DB -ScriptBlock {Get-Process}
OR
Invoke-Command -ComputerName (get-content c:\scripts\servers.txt) -ScriptBlock {Get-Process}

This method is also called fan-out or 1: many remoting. You run the same command on multiple
computers in just a single command.

All commands and variables in the ScriptBlock are evaluated on the remote computer. So, if you do
something like -ScriptBlock {Get-Process -Name SprocName}, PowerShell expects the remote computer
session to have SprocName defined. You can however pass variables on the local computer to a remote
session when using Invoke-Command. This brings us to the next point in our discussion.

Run script files on remote computers
There are a couple of ways of doing this.

First method is to use the —FilePath parameter.

Invoke-Command -ComputerName SP2010-WFE -FilePath C:\scripts\Test.PS1

Note that the script you provide as a value to -FilePath must exist on the local machine or at a place
accessible to the local machine. So, what if you want to run a script that exists only on the remote server?

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

You can use -scriptblock for that.
Invoke-Command -ComputerName SP2010-WFE -scriptBlock { C:\scripts\Test.PS1 }
This way, you can execute the script present on a remote machine but not on the local system.

Passing variables to remote session
Taking the above example, we can pass name of the process you are looking for as a variable to the
script block. ArgumentList parameter helps you achieve this. You can do this as shown here.

$procName "powershell"
Invoke-Command -ComputerName (get-content c:\scripts\servers.txt)

-ScriptBlock {param ($Name) Get-Process -Name $Name} -ArgumentList $procName

The above example may be a simple one but it shows how to use -ArgumentList parameter to pass local
variables to the remote session.

Using persistent sessions with Invoke-Command
Whenever you run Invoke-Command with -ComputerName parameter, a temporary session gets
established to execute the remote command.

So, establishing a session every time you use this cmdlet can be time consuming. This may be OK for
executing a couple of commands but not when you want to execute more commands or scripts. So, to
avoid this we can use a persistent session to the remote computer and that is what -Session uses. You
can create a persistent connection to a remote computer by using New-PSSession cmdlet as shown here.

Ss = New-PSSession -ComputerName SP2010-WFE

Now, Ss contains the session details for the persistent connection. We can use Ss to invoke a command
on the remote computer and the syntax for that will be

Invoke-Commad -Session Ss -ScriptBlock {get-Process}

Ss contains all the variables you create / modify when you execute commands on the remote computer.
So, subsequent command execution with Ss as the session will have access to all of the variables created
/ updated on the remote computer. For example,

Ss = new-pssession -computername SP2010-WFE
Invoke-Command -Session Ss -ScriptBlock {SfileCount = (Get-Childltem D:\ -Recurse).Count}
invoke-command -session Ss -scriptblock {SfileCount}

We could access SfileCount variable only because we used a persistent session to run the command.
This would not have been possible if used -ComputerName to invoke the remote command.

Running remote command as a background job
The example shown above — which gets the total file count on D:\ of a remote machine — can be quite
time consuming based on how big is D:\ on the remote computer. In such case, you will have to wait for

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

the remote command to complete execution. To avoid this, you can use -AsJob parameter to run the
command as a background job® on the remote computer.

Invoke-Command -ComputerName SP2010-WFE -ScriptBlock {(Get-Childltem D:\ -Recurse).Count} —asJob

Once you run this, you will see the job details listed as shown here

HasMoreData Location Command

ravi-dev (Get—ChildItem

Figure 4 Background Job

When you use —asJob parameter with Invoke-Command cmdlet, the background job gets created locally
but runs on the remote computer. Since this job is created locally, we can use *-Job cmdlets to manage
the job object.

For example, you can use Get-Job to monitor the status of the job and once the job status changes to
completed, you can use Receive-Job cmdlet to see the output of the script block specified.

Get-Job -Id 3 | Receive-Job

You can also use Start-Job within the script block to create a background job on the remote computer.
However, this way the job output will be available only on the remote computer. So, when you need to
get the output from this background job, you need to use Receive-Job within the script block to Invoke-
Command.

For a complete discussion on background jobs in remoting, refer to About Remote Jobs article on

technet.

Specifying credentials required for remoting

As discussed earlier in chapter 2, you can use PowerShell remoting between computers in a workgroup
environment. All of the examples | showed above assume that you have access to remote computer as
an administrator. This method works quite well in a domain environment where the logged on user has
administrator credentials to access any computer in the domain. So, you don’t have to explicitly pass the
credentials to Invoke-Command. However, this will not work in a workgroup setup and you need to pass
the credentials along with Invoke-Command. To do that,

Scred = Get-Credential
Invoke-Command -ComputerName SP2010-WFE -ScriptBlock { Get-Process} -Credential Scred

In the example above, Get-Credential prompts for the credentials to access remote computer and uses
the same while calling Invoke-Command cmdlet.

Note

® About Background jobs: http://technet.microsoft.com/en-us/library/dd315273.aspx

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

http://technet.microsoft.com/en-us/library/dd315320.aspx
http://technet.microsoft.com/en-us/library/dd315273.aspx

Summary

In this chapter, we looked at how Invoke-Command cmdlet can be used to execute commands on a
remote computer. We looked how to create a persistent session and use that along with Invoke-
Command. You can use background jobs in remoting to execute time consuming commands as a job on
the remote machine. There are other parameters to Invoke-Command include session options, etc. We
will look at this in detail in part 2 of this guide.

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

Chapter 4: Interactive remoting sessions

To understand the advantages of interactive remoting in PowerShell 2.0, let us first look at some gotchas
with Invoke-Command. Take an example of a remote system where SharePoint 2010 is installed.
SharePoint 2010 provides native PowerShell cmdlets and these cmdlets can be accesses only if you load
Microsoft.SharePoint.PowerShell PS snap-in. So, to do this using Invoke-Command

Ss = New-PSSession -ComputerName SP2010-WFE

#load the PS Snap-in to enable SharePoint PS cmdlets
Invoke-Command -Session Ss -ScriptBlock {Add-PSSnapin Microsoft.SharePoint.PowerShell}

#Ss has the PowerShell cmdlets now
Invoke-Command -Session Ss -ScriptBlock {Get-SPWeb http://sp2010-wfe:999}

If you look at the above code, we will have to use a persistent session so that we can use SharePoint
cmdlets in subsequent Invoke-Command calls. Without a persistent session, you will have to load the
SharePoint snap-in every time before using a SharePoint cmdlet.

Another caveat will be the unavailability of remote computer cmdlets in the local PowerShell session —
in this case, the SharePoint 2010 cmdlets. This — essentially — means that we cannot use Get-Help or
Get-Command cmdlets against the SharePoint 2010 cmdlets in the local session unless we pass that as a
script block to Invoke-Command.

One more disadvantage of using Invoke-Command is unavailability of command completion. Unless the
cmdlet you are using inside the script block is available locally, you cannot use tab completion. This can
be a pain for many, including me.

This is where interactive remoting comes in to play.

Starting an interactive remoting session
Enter-PSSession and Exit-PSSession are the cmdlets used to start / exit an interactive remoting session.
To enter an interactive session,

Enter-PSSession -ComputerName Ravi-Dev

Once you enter an interactive remoting session, PowerShell prompt changes to reflect the remote

computer name you just connected to. This indicates that you are in an interactive remoting session.

= Administrator: Windows PowerShell

PS C:oxlUszerss~Administrator?> Enter—PSSesszion —ComputerMame ravi—Deu
[ravi—dev]: P§ C:xUsers~Administrator.SSE~Documents>

Figure 5 Interactive Session

You can now add the SharePoint snap-in using Add-PSSnapin cmdlet.

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

Add-PSSnapin Microsoft.SharePoint.PowerShell

Once the snap-in is loaded, you will have access to all the SharePoint 2010 cmdlets as if they are
available on the local computer. You can verify that by using Get-Help against one of the SharePoint
2010 cmdlets.

Get-Help Get-SPWeb —Full

Exiting an interactive session

You can use Exit-PSSession to come out of an interactive PS Session. Remember, by specifying —
ComputerName as the parameter to Enter-PSSession, we are using only a temporary PS Session and is
not a persistent session. So, any variables you create and the command history will all be gone if you
exit this interactive session.

Using persistent sessions with interactive remoting

As discussed earlier, it will be advantageous to use persistent sessions. By using a persistent session, you
can enter and exit the interactive session as many times as you like. All the data and variables you
created in the remote session will persist until you remove the session. You can do it the same way you
used persistent sessions with Invoke-Command.

Ss = New-PSSession -ComputerName SP2010-WFE
Enter-PSSession -Session Ss

Starting interactive remoting with an existing session
It is quite possible that you would have created a persistent session to use with Invoke-Command. You
can use the same persistent session with Enter-PSSession to start an interactive remoting session.

You can use Get-PSSession cmdlet to see a list of all available/opened PS Sessions and then use Enter-
PSSession as shown above to start interactive remoting. As you see here, | will pipe Get-PSSession
output to Format-List cmdlet to get all session details.

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

PE C:“UWindowsssystemd2> Get—PSSession 1 fl =

State
ComputerMame
Conf igurationMame

Opened

Microsoft.PowerShell
Lhad1Ved—f983-4265—-addc—cB892c2500eBd

i

Sesszionl

Available

{PEUerzionTabhle’
System.Management . Automation . RemoteRunspace

ApplicationPrivateData
Runzpace

State
ComputerMame
Conf igurat ionHame

Opened

Microsoft . PowerShell
el58851a-52eB-422e-872d-6falfe?3396d

2

Seszion2

Availahble

{PEUerzionTabhle’
System.Management . Automation . RemoteRunspace

ApplicationPrivateData
Runzpace

Figure 6 Get-PSSession

There are four ways to enter an existing PS Session for interactive remoting. | have highlighted the
available options in the above screenshot. You can use whichever way is convenient to you.

Method 1: Using session Id
Enter-PSSession -id 1

Method 2: Using session instance Id
Enter-PSSession -Instanceld 55a417ed-f903-4265-a4dc-c892c2500e0d

Method 3: Using session name
Enter-PSSession -Name Session1

Method 3: Using -session parameter
Ss = Get-PSSession -Id 1
Enter-PSSession -Session Ss

All of the above options start interactive session using the persistent session “session1”. It is just more
than one way to do the same thing.

Summary
This chapter gave a quick overview of interactive remoting in PowerShell 2.0 and how to use Enter-
PSSession, Exit-PSSession and Get-PSSession cmdlets.

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

Chapter 5: Implicit remoting in PowerShell

In chapter 4 on interactive remoting sessions, we looked at how we can enter a remote session and then
execute commands as if they were local. However, if you'd observed it more closely, we were actually
sitting in the remote session than local session. The change in PowerShell prompt indicates this fact
clearly.

In this chapter, we will look at implicit remoting feature in PowerShell. This feature makes it possible to
run the commands / scripts on the remote computer while in the local session. Just read on if that
statement sounds confusing.

Why implicit remoting?

We use interactive remoting to overcome a few disadvantages of using Invoke-Command. This method
too has its own drawbacks. Within interactive remoting, you explicitly enter/exit a remote session. This
also means that you are connected only to one remote computer and you have access only to the
cmdlets or modules available on that remote computer. What if you want to access different cmdlets
available on different computers?

For example, let us say you have two different computers one with Exchange 2010 and other with
SharePoint 2010. Now, if you want to access cmdlets available to manage both these technologies from
a “single computer” and in the “local session”. Take a note, “single computer” and “local session” is the
key to understand the concept of implicit remoting. The important thing to understand is that we need
to manage multiple computers / technologies without ever the need to go out of local PowerShell
session.

Using Invoke-Command is certainly not the choice because it involves setting up a session to the remote
computer and then sending a script block to execute in that session. This is quite tedious. Although
interactive remoting can eliminate the drawbacks of Invoke-Command, it is specific one remote session.
So, if you are connected to the Exchange 2010 remote session, your SharePoint 2010 session is not
available. This is where implicit remoting becomes important.

Implicit remoting can be used to bring remote commands to a local session. In implicit remoting, once
you import remote commands in to a local session, you don’t have to worry about the PS session details.
You can import any number of remote sessions in to the local session making it possible to access
cmdlets from different product technologies in the same local session. PowerShell will take care of that
for you in the background.

Creating an implicit remoting session
Well, we have to first create a persistent PS session using New-PSSession and then use that to import
remote commands in to local session. You can do it as shown here

Ss = New-PSSession -ComputerName SP2010-WFE
Import-PSSession -Session Ss

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

By default, Import-PSSession imports all commands except for commands that have the same names as
commands in the current session. To import all the commands, use the -AllowClobber parameter. You
will see a progress bar on top of the console window showing the progress of the import.

If you import a command with the same name as a command in the current session, the imported
command hides or replaces the original commands. This is because import session converts the cmdlets
to functions before importing and functions take precedence over cmdlets. So, imported commands
take precedence over the local commands with same name -- irrespective of the fact whether those
commands are loaded after importing a session or before.

To know more about the command precedence, read about Command Precedence.

However, aliases are an exception. Original aliases in the local session take precedence over imported
aliases.

Avoiding name conflicts while importing a remote session
Import-PSSession provides a -Prefix parameter which adds the specified prefix to the nouns in the
names of imported commands. For example,

Import-PSSession -Session Ss -Prefix RS

This will prefix RS to all the cmdlets imported from a remote computer. So, if Get-Command was
imported using this method, the local session will have Get-RSCommand and when you use this cmdlet,
PowerShell implicitly runs this command inside the remote session.

As we discussed earlier in this chapter, PowerShell manages implicit remoting in the background. So, the
behavior of Invoke-Command, creating/destroying a PS session every time we execute a remote
command, exists with implicit remoting too. Hence, you will see that executing remote commands over
this method a bit slow. To work around this, import-PSSession adds a -aslob parameter to all the
commands imported in to the local session.

For example,

Ss = New-PSSession -ComputerName Ravi-Dev
Import-PSSession -Session Ss -Prefix RS
Get-RSProcess -asJob

This will run Get-RSProcess on the remote computer as a background job. Make a note that the original
Get-Process has no -asJob parameter.

Importing modules and snap-ins to local session

Ss = New-PSSession -ComputerName Ravi-Dev

Invoke-Command -Session Ss -ScriptBlock {Import-Module ActiveDirectory}
Import-PSSession -Session Ss -Module ActiveDirectory

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

http://technet.microsoft.com/en-us/library/dd347579.aspx

In the above example we first create a PS session, import active directory module using Invoke-
Command and then import the session in to the local session. This makes all the active directory cmdlets
available in the local session.

Now, we can connect do a different remote session and import cmdlets from that session also.

Ss = New-PSSession -ComputerName SP2010-WFE
Invoke-Command -Session Ss -ScriptBlock {Add-PSSnapin Microsoft.SharePoint.PowerShell}
Import-PSSession -Session Ss

Now, within the local session, we have access to AD cmdlets from one computer and SharePoint 2010
cmdlets from another machine. This makes it easy to manage both from the same computer and local
session without worrying much about creating / destroying sessions.

Limitations of implicit remoting

Using implicit remoting you cannot import variables or Windows PowerShell providers. You cannot start
a program with user interface or requires access to interactive desktop. Since, import-PSSession uses
Invoke-Command to run the remote commands, it may be slow. Hence, all imported commands get
support for —asJob parameter to run them as background jobs on the remote computer.

Summary

Implicit remoting is about bringing remote commands to local session. This technique can be used to
import modules/snap-ins for commands that aren’t available natively to PowerShell. In this chapter, we
looked at how to create implicit remoting sessions and a few parameters used along with Import-
PSSession cmdlet.

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

Chapter 6: Saving remote sessions to disk

In chapter 5, we looked at how we can use Import-PSSession cmdlet to execute remote commands as if
they were local. This is nice but this will last only while the persistent session is alive. The moment we
kill the session — using Remove-PSSession or the session is broken; the implicit remoting session will
also get killed.

In this chapter, we look at how we can save a remoting session to disk so that we don’t even have to
explicitly create a PS session to execute commands on a remote computer.

Export remote session to a module on disk

This is achieved using Export-PSSession cmdlet. This cmdlet lets us import commands from a remote
session and save the same in a PowerShell module on the local disk. This cmdlet can get cmdlets,
functions, aliases, and other command types in to a PowerShell module. The following example shows
how we can achieve this.

Ss = New-PSSession -ComputerName SP2010-WFE
Invoke-Command -Session Ss -ScriptBlock {Import-Module ActiveDirectory}
Export-PSSession -Session Ss -OutputModule ADRemoteCommands -AllowClobber -Module ActiveDirectory

In the above example, the first two lines should be quite familiar by now. The third line is where the
magic happens. We tell Export-PSSession cmdlet to export all the commands, aliases, functions, etc
available in PS Session $s to a module on hard disk and name it ADRemoteCommands.

If the Export-PSSession is successful, you will see output similar to what is shown here

Directory: C:islserswadministratorsDocuments™WindowsPowerShell“Modules“~ADRemoteCommands

Mode LastWriteT ime Length Mame

—a——— 274/ 8 196132 ADRemoteCommands -psml

o 2,97 B 2% ADRemoteCommands .format.psixml
o 2,97 B 5927 ADRemoteCommands . psdl

P8 C:sUserssadministrator>

Figure 7 Export-PSSession output

In the above output, it is clear that Export-PSSession generates .psm1, .psd1 and format data file for the
module automatically. Now, you can load the module at any later point in time to get access to the
remote commands.

Importing a module saved on disk
If you observe the output closely, path where the module files are stored is same as SEnv:PSModulePath.
So, you don’t need to specify the absolute path to the module.

Import-Module ADRemoteCommands

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

This imports all remote commands available in the module to local session. Whenever we execute a
remote command, implicit remoting kicks in, establishes the remote session, executes the command in
remote session and returns the output. All this is done without you really using any remoting related
cmdlets. If establishing a remote session requires a password, you will be prompted for one.

Limitations of Export-PSSession

Using Export-PSSession has the same limitations as implicit remoting. You cannot use Export-PSSession
to export a Windows PowerShell provider. You cannot start a program with user interface or requires
access to interactive desktop. The exported module does not include the session options used to create
the session. So, if you need any specific session options to be configured before running remote
commands, you need to create a PS Session with all the required session options before importing the
on disk module.

Summary

Saving a remote session to disk can be done using Export-PSSession cmdlet. This is a very quick method
to execute commands on a remote computer without explicitly creating a PS session or entering an
interactive remoting session.

This also brings us to the end of part 1. In part 1, we looked at the basics of PowerShell remoting such as
what is remoting, enabling remoting in various scenarios, executing remote commands and
importing/exporting remoting sessions. Part 2 of this guide looks at a bit more advanced aspects of
PowerShell remoting.

Keep reading..!

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

PART 2

Chapter 7: Understanding session configurations

In chapter 2, we saw that whenever PowerShell remoting is enabled, the default session configurations
get registered. Also, Invoke-Command, Enter-PSSession and New-PSSession cmdlets have a -
ConfigurationName parameter which can be used to specify a different session configuration than the
default one. So, what are these session configurations?

So, in this part, we will look at all the PS session configuration cmdlets; discuss how to create custom PS
Session configurations and the need for it. Let us dive in to this now.

What is a PS Session configuration?
A session configuration can be used to define

e Who can create a Windows PowerShell session on the local computer
e What level of access — to cmdlets, scripts and PowerShell language — they have on the local
computer, etc.

When you enable PowerShell remoting using Enable-PSRemoting, you will see a final step performing
Microsoft.PowerShell and Microsoft.PowerShell32 (on x64 systems) session configuration registrations.
These default session configurations are used when the remote users connecting to local system do not
specify a configuration name. By default, only members of administrators group have access to these
two session configurations. Hence, only members of administrators group will be able to create
remoting sessions by default.

Based on the above description, PowerShell session configurations can be used to
e customize the remoting experience for users
o delegate administration by creating session configuration with varying levels of access to system

In this chapter, we will look at session configurations and see how we can create custom session
configurations. We will discuss delegated administration at depth in a later chapter.

Cmdlets available to manage session configurations

The following cmdlets are available to manage session configuration.
1. Register-PSSessionConfiguration

Unregister-PSSessionConfiguration

Enable-PSSessionConfiguration

Disable-PSSessionConfiguration

Set-PSSessionConfiguration

o vk wnN

Get-PSSessionConfiguration

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

Creating a new session configuration

Register-PSSessionConfiguration cmdlet can be used to create a new session configuration. You can use
a C# assembly or a PowerShell script as a startup script for this new session configuration. This startup
script can be used to customize the remoting experience. For example, create a script the imports Active
Directory module using import-module cmdlet as shown here.

Import-Module ActiveDirectory

Save this script as startupscript.psl or any name of your choice on the local computer. Now, use the
Register-PSSessionConfiguration cmdlet to create a new session configuration. This can be done by
running

Register-PSSessionConfiguration -Name "ActiveDirectory" -StartupScript C:\scripts\StartupScript.ps1

You will be prompted to confirm this action and at the end to restart WinRM service on the local
computer.

Note

You must enable script execution on the local computer to be able to use the startup script as a part of
session configuration

List available session configurations

From the local computer
Get-PSSessionConfiguration cmdlet lists all the available session configurations on the local computer.

PS C:-scripts» Get—PSSessionConfiguration

PSUersion StartupScript Permission

Cosscriptssstartu. ..
BUILTIN“Administrators AccessAll...
BUILTIN“Administrators AccessAll...

Figure 8 Get-PSSessionConfiguration

As you see in the above output, Get-PSSessionConfiguration lists all available session configurations on
the local computer and who has permission to access the configuration. No permissions have been
assigned yet to the new active directory configuration.

From a remote computer
Get-PSSessionConfiguration cmdlet cannot be used to access a list of PS Session configurations from a
remote computer. However, we can use Get-WSManlnstance cmdlet to achieve this.

Get-WSManlnstance winrm/config/plugin -Enumerate -ComputerName SP2010-WFE | Where *
{S_.FileName "*pwrshplugin.dll'} | Select Name

This will list all the session configuration names as available on the remote computer. You can then use
one of the session configurations to connect to the remote computer using PowerShell remoting.

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

Note

You must be an administrator and run the above command at an elevated prompt. Also,
You must have access to the session configuration on the remote computer to be able to use it within
PowerShell remoting.

Custom permissions and PS Session configurations
You can use Set-PSSessionConfiguration to allow access to invoke the new session configuration. To do
this,

Set-PSSessionConfiguration -Name ActiveDirectory -ShowSecurityDescriptorUl

This opens up the dialog to add permissions to invoke this session configuration. As you see in the
screenshot here, administrators group has no invoke permission on this session configuration.

P8 C:sscripts? Set—PSSessionConfiguration —Mame ActiveDirectory —ShowSecurityDescriptorll

x|
rt "Mame: ActiveDirectory'.
id [?] Help <{default is "¥'>»:- ¥

Pemissions for Administrators

Full Control{All Operations)
Read(Get, Enumerate, Subscribe)
Write(Put Delete Create)
Bxecute(invoke)

Special permissions

For special pemissions or advanced settings, Ad = |
click Advanced. e

Figure 9 Security descriptor Ul

Select Allow -> (Execute) Invoke permission and click OK. You will be prompted to restart the WinRM
service. Now, an administrator or a member of administrators group will be able to use this session
configuration. Similarly, you can add a non-administrator user to the list of users/groups and then assign
appropriate permissions. This way, you can have non-administrator uses to remote in to the local
computer using PowerShell remoting. You can read more on this in the next chapter.

Invoking a custom session configuration

You can use New-PSSession, Enter-PSSession and Invoke-Command cmdlets to load a session
configuration other than the default configuration. The ConfigurationName parameter can be used to
specify the session configuration. The following code snippet shows three different ways to invoke a
remote session using a custom session configuration name.

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

Ss = New-PSSession -ComputerName SP2010-WFE -ConfigurationName ActiveDirectory
Enter-PSSession -ComputerName SP2010-WFE -ConfigurationName ActiveDirectory

Invoke-Command -ComputerName SP2010-WFE -ConfigurationName ActiveDirectory -ScriptBlock {Get-
Process}

Note

To be able to use a StartupScript, script execution policy must be set to an appropriate setting on the
local computer where the session configuration is registered.

In an earlier chapter, we used Invoke-Command to load the active directory module within a persistent
session and then use that persistent session to import active directory cmdlets in to local session.
However, by using a session configuration that import active directory module as a startup script, we
will have all the AD cmdlets available as soon as we connect to the remote session.

Disable a session configuration

You can use Disable-PSSessionConfiguration cmdlet to disable an existing session configuration and
prevents users from connecting to the local computer by using this session configuration. You can use -
Name parameter to specify what session configuration you want to disable. If you do not specify a
configuration name, the default Microsoft.PowerShell session configuration will be disabled.

The Disable-PSSessionConfiguration cmdlet adds a “deny all” setting to the security descriptor of one or
more registered session configurations. As a result, you can unregister, view, and change the
configurations, but you cannot use them in a session. Disable-PSRemoting cmdlet will disable all PS
Session configurations available on the local computer.

Enable-PSSessionConfiguration cmdlet can be used to enable a disabled configuration. You can use -
Name parameter to specify what session configuration you need to enable.

Delete a session configuration

You can use Unregister-PSSessionConfiguration cmdlet to delete a previously defined session
configuration. It is quite possible to delete the default session configuration — Microsoft.PowerShell —
using this cmdlet. However, this default session configuration gets re-created if you re-run Enable-
PSRemoting cmdlet.

Summary

In this chapter, we looked at the basics of PowerShell session configurations and how to create custom
configurations. We also looked at cmdlets to manage these session configurations. By default, it is
necessary that you need to a part of local administrators group to remote in to computer. However,
using custom session configuration and permissions assigned to these configurations, we can enable a
non-administrator user to remote in to a computer using PowerShell remoting.

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

Chapter 8: Using custom session configurations

“With great power comes great responsibility”, said Uncle Ben.

But some people don’t just understand that. That is when you have to rip-off their powers. Similarly, the
default PS Session configuration allows full access to PowerShell language, cmdlets, scripts and
everything available to PowerShell. Of course, you need to authenticate as a local administrator or
should have execute permission to invoke the session. Running a few cmdlets such as Stop-Service or
Restart-Computer can be quite dangerous on a production server. This is where a custom session
configuration can help provide role based access to remote host using PowerShell remoting.

We touched upon creating custom session configuration in the previous chapter of this PowerShell
remoting guide. In this chapter, we look at how we can extend the concept of custom session
configuration to restrict available commands and PowerShell language in a remote session. | will go
straight in to the startup script used to implement this since we already looked at how to create custom
session configuration and assign permissions to a specific user.

SRequiredCommands = @("Get-Command"
"Get-FormatData"
"Out-Default"
"Select-Object"
"Out-file"
"Measure-Object"
"Exit-PSSession"

)

SExecutionContext.SessionState.Applications.Clear()
SExecutionContext.SessionState.Scripts.Clear()

Get-Command -CommandType Cmdlet, alias, function | ?{SRequiredCommands S_.Name}
%{S_Visibility="Private"}
SExecutionContext.SessionState.LanguageMode="RestrictedLanguage"

As you see here, we have only a few required commands. We don’t want the remote user to execute
commands other than this set. BTW, this set is the absolute minimum required even to start remoting
session. So, consider this as a standard required commands list. Towards the end, we set the language
mode to restrict to make sure the remote user cannot execute infinite loops, etc that could potentially
bring the system down. This script, when used as the startup script for a session, will result in something
as shown here.

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

PS5 C:\Windowsssystem32> Enter—-P5Session —ComputerName Localhost —ConfigurationName Restricted
[localhost1: PS>Get—Process

[localhozt1: PS3>Get—Command

Name Definition

Exit-P88eszion Exit—-P88ession [-Uerhosel [-Debugl [-ErrorAction
Get—Command Get—Command [[-ArgumentList] {0Object[1>1 [-Uerh
Get—FormatData Get—-FormatData [[-TypeMame]l <String[]1>] [-Verhos
Measure—Object Measure—0Obhject [[-Propertyl {S8tringl[1>] [-Inputd
Qut-Default Qut-Default [-InputObject <PSObject>] [-Verhosel
Out-File Out-File [-FilePathl <{8tring> [[-Encodingl <{S8tri
Select—0bject Select—0bject [[-Propertyl <Object[1>]1 [-InputOh...

Figure 10 inside a restricted Session

As you see above, get-Command lists only the commands we have in the Required Commands list.
However, if you have a large list of required commands, the method you have seen in the above code is
not scalable. Instead, you can use a denied list of commands that is relatively small. For example, if you
don’t want your users to execute Stop-Process or Restart-Computer, your code will look like

SDeniedCommands = @("Stop-Process"
"Restart-Computer"

)

SExecutionContext.SessionState.Applications.Clear()
SExecutionContext.SessionState.Scripts.Clear()

Get-Command -CommandType Cmdlet, alias, function | ?{SDeniedCommands S _Name}
%{S_.Visibility="Private"}
SExecutionContext.SessionState.LanguageMode="RestrictedLanguage"

So, if you use this code for your startup script, you will see something like this

PS C=“\Documents and Settings“\Ravi> Enter-PSSession —-ComputerMame WIN-8JUMU641TMQ —ConfigurationMame Restrcited
[win—8junubd4itmgl: PS C:SUserssravisDocuments? Get—Process | Select —first 3

NPHCKD PMCKD USCK> UMCH> CPUCs) Id ProceszName
448 conhost

344 cspss

1648 384 cspss

[win—8junubd4itmgl: PS C:SUserssravisDocuments? Stop-Process

[win—-8junubd4itmgl: PS C:wUsers:ravisDocuments? Restart—Computer

[win—-8junubditmgl: PS CG:wUsers:ravisDocuments> _

Figure 11 Inside a restricted session

| prefer the second method.

If you need to extend or modify the behavior of commands in a remote session, you need to create
command proxies. You can read more about it @

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/restrictedsession1.png
http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/restrictedSession.png
http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/restrictedsession1.png
http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/restrictedSession.png

http://blogs.msdn.com/powershell/archive/2009/01/04/extending-and-or-modifing-commands-with-
proxies.aspx

What | have shown here is just one way of achieving control in the remote sessions. However, based on
your organization needs there could be a better way of doing this. These methods include user role
based restrictions, etc as discussed at a PDC'09 session. Do refer to that for more information.

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

http://blogs.msdn.com/powershell/archive/2009/01/04/extending-and-or-modifing-commands-with-proxies.aspx
http://blogs.msdn.com/powershell/archive/2009/01/04/extending-and-or-modifing-commands-with-proxies.aspx
http://blogs.msdn.com/powershell/archive/2010/02/08/pdc09-svr12-and-svr13-slides.aspx

Chapter 9: Interpreting, formatting and displaying
remote output

In this chapter, we will look at remoting output. This includes how the output is transferred from remote
computer to local, how it is displayed and how we can format this output based on a need. We already
discussed various methods to execute commands (part4, part 5 and part 6) on a remote computer. In
this post, for the sake of our discussion of remoting output, | will use only Invoke-Command method to
execute remote commands. However, | will point out the differences as required.

Note
Most of this does not apply within an interactive remoting session

The concepts of remoting output are explained in a TechNet article at http://technet.microsoft.com/en-

us/library/dd347582.aspx . | am going to put some story around this to help you understand the

concepts well.

First, let us start with an obvious difference in the output received from a remote session. If you use
Invoke-Command to run Get-PSDrive, you see something like this.

CurrentLocation PSComputerName

ke =
20.72 186.17 3 UserssAdministratorsDocuments IiEaiEgy-'f &

ki 1 2

il f ©

wfe

wfe

HKEY_CURRENT _USER [mi
HKEY_LOCAL_MACHINE —wg e
wfe

I f -

Figure 12 Remote Output

You can see an additional column in the output that shows the remote computer name with
PSComputerName as the column name. This won’t be displayed if you run the same cmdlet on local
computer. So, if you don’t want to display this information in the remote output you can use the -
HideComputerName parameter.

It is also possible that some cmdlets may not display PSComputerName property. For example, Get-Date.
In such a scenario you can add PSComputerName to the output of Get-Date as shown here

Invoke-Command -ComputerName Server01,Server02 -ScriptBlock {Get-Date} | ft DateTime
PSComputerName —Auto

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

http://technet.microsoft.com/en-us/library/dd347582.aspx
http://technet.microsoft.com/en-us/library/dd347582.aspx
http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/remoteoutput.png

DateT ime PSComputerMame

Monday, February 15, 2818 4:32:27 PM gl -

Monday, February 15, 20816 4:32:27 PH sl 1 c

Figure 13 Get-Date output

How remote output comes over to local computer?

The objects that Windows PowerShell cmdlets return cannot be transmitted over the network. So, the
live objects are “serialized”. In other words, the live objects are converted into XML representations of
the object and its properties. Then, the XML-based serialized object is transmitted across the network to
the local session where it gets de-serialized in to .NET object. This is how an MSDN article defines
serialization in .NET framework.

Why would you want to use serialization? The two most important reasons are, to persist the
state of an object to a storage medium so an exact copy can be recreated at a later stage, and to
send the object by value from one application domain to another. For example, serialization is
used to save session state in ASP.NET and to copy objects to the clipboard in Windows Formes. It
is also used by remoting to pass objects by value from one application domain to another.

As it is defined above, the live objects are converted in to XML based representation. So, once de-
serialized in the local session, they don’t expose any methods that actually belong to the object. Let us
see an example to understand this. First, let us look at Get-Process output in a local session and see
what all methods we see.

PS C:sUindows:ssystem32> Get—Process | Get—Member —MemberType Method

TypeMame: System.Diagnostics.Process
MemberType Definition

BeginErrorReadLine Method System.Uoid BeginErrorReadLine{)
BeginQutputReadLine Method Syztem.Uoid BeginQutputReadLine(?
iCance lErrorRead Method Syztem.Uoid CancelErrorRead()
iCance l10utputRead Method Syztem.Uoid CancelOutputRead()
Method Syztem.Uoid Closze()
Method bhool CloseMainWindow(>
Method System.Runtime.Remoting.0bjRef CreateObjRef (type requestedlyped
Method System.Uoid Dizposel)
Method hool Equalz¢System.0bject ohj?
Method int GetHashCode (3
GetLifetimeService Method Syztem.0bject GetLifetimeServicel)
GetT upe Method type GetTypeld
InitializeLifetimeService Method System.0Object InitializeLifetimeService(?
Kill Method System.Uoid Kill{)
Method System.Uoid Refresh()
Method bool Start(>
Method string ToString()
WaitForExit Method bool WaitForExit¢int millizeconds)>. System.Uoid WaitForExit()
MaitForInputldle Method bool WaitForInputIdledint millizeconds?. hool WaitForInputIdle(>

F5 C:xUWindowsssystem32>

Figure 14 Local output

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

http://msdn.microsoft.com/en-us/library/ms973893.aspx
http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/remoteoutputdate.png
http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/getprocesslocal.png
http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/remoteoutputdate.png
http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/getprocesslocal.png

Here, you can see a list of methods you can use against a process object. Now, let us take a look at how
this looks when we execute the same command in a remote session.

PS C:\indowsNsystemd2> Invoke—Command —ComputerMame Localhost -ScriptBlock {Get-Process} | Get-Memher —MemherType Metho
d

TypeMame: Deserialized.System.Diagnostics.Process

Name MemberType Definition

ToString Method string ToString(), string ToString(string format, System.IFormatProvider formatProvider)

Figure 15 De-serialized output

If you observe in the above screenshot, TypeName represents a deserialized object and there are no
methods that you can use against a process object. A deserialized object represents a snapshot of get-
process at the time of command execution in the remote session. This also means that you can’t
execute methods such as Kill() against a deserialized process object. Also, no methods to modify the
property set will work in the local session.

Windows PowerShell blog has a nice post on how objects are to and from a remote session. |

recommend that you read this post for more information.

Formatting remote output

Most de-serialized objects are automatically formatted for display by entries in the Types.pslxml or
Format.pslxml files. However, the local computer might not have formatting files for all of the de-
serialized objects that were generated on a remote computer. When objects are not formatted, all of
the properties of each object appear in the console in a streaming list. To get formatting data from
another computer, use the Get-FormatData and Export-FormatData cmdlets. Again, let us take an
example to understand this.

Take an example of a SharePoint 2010 farm and you want to access /run SharePoint 2010 cmdlets from
a Windows 7 machine using Invoke-Command. First, if we run Get-SPSite on SharePoint 2010 web
frontend, you will see

PS CoxlUsers“Adminiztrator> Get—SPSite
Ur1

http://pall
IRy e i 12121
http: /sl f

Now, if we try to run the same in a remote session using Invoke-Command, you will see

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

http://blogs.msdn.com/powershell/archive/2010/01/07/how-objects-are-sent-to-and-from-remote-sessions.aspx
http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/getprocessremote.png
http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/getspsitelocal.png
http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/getprocessremote.png
http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/getspsitelocal.png

PS C:\lUserssadministrator.SP2A1BLAB> Invoke—Command -Session %z —ScriptBlock {Get-SPSitel

PS ComputerName sl | c

Runzpaceld 1e27a299-cfB8-4bcB—2cl1b-5f7340549cdd
PSS howComputerName True

ApplicationRightsMask FullMaszk

ID

?53eaab8-98fc—4c??-h3b2-467339chbB?6
SystemAccount SHAREPOINT “~system
Ouner SP2@18LABNadministrator
SecondaryContact
GlohalPermMazk FullMazk
I15A11owsAnonymous True
Protocol http:
HoztHeaderlzSiteName Falze

Figure 16 Remote Output

As you see in the above screenshot, the output from a remote session is quite different from the one
you saw in a local session. This is because we don’t have the formatting data available on the Windows 7
computer.

We can use Get-FormatData, Export-FormatData and Update-FormatData cmdlets to get the formatting
data from a remote computer to local session. To do this

Ss = New-PSSession -ComputerName SP2010-WFE

Invoke-Command -session Ss -ScriptBlock {Add-PSSnapin Microsoft.SharePoint.PowerShell}
Invoke-Command -Session Ss -ScriptBlock {Get-FormatData -TypeName *SharePoint*} | Export-FormatData -
Path C:\scripts\SharePoint.Format.ps1xml

Update-FormatData -PrependPath C:\scripts\SharePoint.Format.pslxml

The above code snippet will let you import the formatting data for all SharePoint cmdlets in to the local
session. Now, if we run Get-SPSite in the remote session using Invoke-Command,

PS C:\lUserssadministrator.SP2OA1BLABY Invoke—Command -Session $s —ScriptBlock {Get-SPSite’

Url PSComputerMame

http://
http:ﬁm—wfe 12121 il /f e
http: /gl f e Py - :f e

PS C:slserssadministrator.SP201BLABY Invoke—Command -Session $s —ScriptBlock {Get-5PSiteY -HideComputerName

wfe:12121

Figure 17 Remote output with formatting

Now, with the formatting information in the local session, you can see that Get-SPSite output is
formatted similar to the one we saw when we ran the cmdlet in a local session. However, make a note
that this applies only to the current session. If you close and re-open the PowerShell console, the
formatting data will be lost. You can add the Update-FormatData cmdlet to your PowerShell profile to
make the format data across all PowerShell sessions.

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/getspsiteremote.png
http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/getspsiteremote-formatdata.png
http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/getspsiteremote.png
http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/getspsiteremote-formatdata.png

Chapter 10: Using CredSSP for multi-hop authentication

In this chapter, we will look at how CredSSP’ can be used for multi-hop authentication® in PowerShell
remoting. CredSSP and multi-hop support are not features of PowerShell 2.0 or PowerShell remoting,
per se. Credential Security Service Provider (CredSSP) is a new security service provider that enables an
application to delegate the user’s credentials from the client to the target server. Multi-hop support in
Windows Remote Management uses CredSSP for authentication. Since PowerShell 2.0 remoting is built
on top of WinRM, we can use CredSSP to perform multi-hop authentication.

Let us look at an example to understand what multi-hop authentication is. Imagine a group of
computers as shown here and you establish a remoting session from computer A (client) to computer B
(server) and then from computer B, you try to create a file in a file share on computer C.

Computer B

omputer A
P (Test-PC)

PS5 Remoting Session

\\FileServer\Share

]

Now, within the remoting session to computer B, we want to execute a command — as below — to

Computer C
(FileServer)

create test.txt on computer C.

Invoke-Command -ComputerName Test-PC.SP2010lab.com -credential SP2010LAB\Administrator -
ScriptBlock {[System.lO.File]::Create(\\FileServer\Share\Test.txt)}

PS C:NlUsers™Administrator? Invoke-Command —ComputerMame test-pc.sp2@1@lab.com -Credential SP2B1BLABMAdministrator —Scrip)
tBlock {[System.l0.Filel::Create("\\FileServer:\Share\Iest.txt")>

PS C:\lUsers™Administrator> _
Figure 18 file share access error
This command results in an “Access Denied” error as shown above. This command fails since the remote

session tries to access the file share using the machine credentials instead of the credentials used to
invoke the remote session. We could have successfully created the text file if there was a way to pass or

’ CredSSP
& multi-hop authentication

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

http://msdn.microsoft.com/en-us/library/cc226764%28PROT.10%29.aspx
http://msdn.microsoft.com/en-us/library/ee309365%28VS.85%29.aspx
http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/credssp.png
http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/credssperror.png
http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/credssp.png
http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/credssperror.png

delegate credentials from the client so that we can authenticate to the file share. This is what is called
multi-hop authentication and PowerShell remoting enables this using CredSSP.

Note: When a domain controller (Windows Server 2008 or Windows Server 2008 R2 is used as a second
hop, the credentials are always received and delegated without the need for CredSSP. Refer to
https://connect.microsoft.com/PowerShell/feedback/details/630672/a-domain-controller-receives-and-
delegates-credentials-even-when-credssp-is-not-configured for more information on this. The reason for

this is the “Trust this computer delegation to any service (Kerberos only)” setting “Delegation Tab” of a
Domain controller’s properties in AD users and computer snap-in. This is enabled by default on all
domain controllers.

" General | Operating System I Member Of Delegation | Location I Managed B'_.fl Dialin I

Deleqgation is a security-sensitive operation, which allows services to act on
behalf of another user.

™ Dg not trust this computer for delegation
¥ Trust this computer for delegation to any service (Kerberos only}
™ Trust this computer for delegation to specified services anly

¥ L I I
"3 T T BT LT I T T
£ Uze any authentication protocal

Semvices b which this account can present delegated credentials:

Service Type | User or Computer | Port | Service Mi

™ Epanded fdd... Remove

OK I Cancel Apply Help

Delegating credentials

The cmdlets to create a remoting session — Invoke-Command, Enter-PSSession and New-PSSession —
have a parameter to specify the authentication method as CredSSP. However, before we use this
parameter, we need to enable credSSP on the computers participating in multi-hop authentication. Also,
when enabling CredSSP, we need to specify the role — client or server — of a computer. A client is the
computer from which the remoting session is initiated and server is the computer from which the multi-
hop authentication is triggered. So, from the above example, we need to enable CredSSP authentication
on computer A and computer B.

m A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

https://connect.microsoft.com/PowerShell/feedback/details/630672/a-domain-controller-receives-and-delegates-credentials-even-when-credssp-is-not-configured
https://connect.microsoft.com/PowerShell/feedback/details/630672/a-domain-controller-receives-and-delegates-credentials-even-when-credssp-is-not-configured

PowerShell 2.0 provides the following cmdlets to manage CredSSP authentication.

1. Enable-WSManCredSSP

2. Disable-WSManCredSSP

3. Get-WSManCredSSP
Let us now look at how we enable WSManCredSSP and specify client / server roles. First, let us enable
CredSSP on computer A.

Note

You need to run these cmdlets in an elevated prompt. And, these cmdlets are not available on Windows
XP and Windows 2003. This means you cannot use the —CredSSP parameter also on a Windows XP or
Windows 2003 computer.

Enable-WSManCredSSP -Role Client -DelegateComputer "*.SP2010lab.com"

As shown here, you can use Enable-WSManCredSSP cmdlet to enable CredSSP authentication and
specify the computer role as client. When the computer role is defined as a client, you can also specify
the DelegateComputer parameter to specify the server or servers that receive the delegated credentials

“uxn

from the client. The delegateComputer accepts wildcards as shown above. You can also specify to

specify all computers in the network.

When Enable-WSManCredSSP cmdlet is used to enable CredSSP on the client by specifying client in the role
parameter. The cmdlet then performs the following:

1. The WS-Management setting <localhost| computername>\Client\Auth\CredSSP is set to true.

2. Sets the Windows CredSSP policy AllowFreshCredentials to WSMan/Delegate on the client.

Now, we will enable CredSSP on computer B and deginate that as server.

Enable-WSManCredSSP -Role Server

The above cmdlet enables CredSSP on computer B and sets the WS-Management setting
<localhost| computername>\Service\Auth\CredSSP is to true. Now, we can use Invoke-Command to run the
script block as shown at the beginning of this post. However, we will specify the authentication method as
CredSSP and pass the credentials.

Invoke-Command -ComputerName test-pc.SP2010lab.com -Credential SP2010Lab\Administrator -
Authentication CredSSP -ScriptBlock {[System.|O.File]::Create(\\FileServer\Share\Test.txt)}

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

PS5 C:sUserssAdministrator? Inuvoke—Command —ComputerMame test—pc.spZBl@lab.com —Authentication CredSSPF —Credential SP2018
LABsAdministrator —ScriptBlock {[System.l0.Filel::Create{"~“\FileServersShare\lest.txt">>

PSComput erName : test—pc.sp2BiBAlab.com
Runszpaceld : el18b24c—486c—4bhf?-8744—eedaaae2Bchb
PSShowComputerMame : True

: True

: True

: True

: False

: 8
: “NWFileBerversSharesTest. txt
]

Position
Handle : Basg

SafeFileHandle : Microsoft.Win3d2.%afeHandles.SafeFileHandle
CanTimeout : False

PE C:sUsersAdministrator?

Figure 19 CredSSP authentication

As you see here, we see the output from Create() method which shows the details of the newly created
file.

Caution

CredSSP authentication delegates the user’s credentials from the local computer to a remote computer.
This practice increases the security risk of the remote operation. If the remote computer is
compromised when credentials are passed to it the credentials can be used to control the network
session.

You can use Disable-WSManCredSSP to disable CredSSP authentication on a client or a server computer.

Disable-WSManCredSSP -Role Client

Disable-WSManCredSSP -Role Server

You can use Get-WSManCredSSP cmdlet to verify if a computer has CredSSP enabled and also the role
(client/server).

Summary

Credential delegation is required when you need to access or authenticate to a second computer within
a remote session. Some of the other examples also include SharePoint 2010 cmdlets. Since, every
SharePoint cmdlet will have to gather data from various servers within the farm and depending on how
you farm accounts are configured, you may need to use CredSSP authentication to authenticate to all
the servers within the farm.

This chapter concludes this remoting guide.

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

http://www.ravichaganti.com/blog/wp-content/uploads/2010/02/icmwithcredsspoutput.PNG

Appendix A: Frequently asked questions

1. Is it mandatory that the user invoking a remote session has administrator privileges?
A: Not necessary. Any non-administrator user can start a remote session if he/she has invoke
permissions to a session configuration on a remote computer. Refer to Chapter 7 for
information on how to do this.

2. Dol need PS remoting enabled on all the computers participating in remoting?
A: No. You need to enable PS remoting only if you want to receive commands from a remote
machine.

3. Why | don’t see my profile getting loaded when I create a remote session?
A: Good question. PowerShell Profiles are not loaded automatically when you create a remote
session. You have to manually run the profile script. Or you can create a custom startup script --
as shown in Chapter 7 — to load the profile.ps1, and use —StartupScript parameter to run the
script every time you create a remote session.

4. Is there a place where a comprehensive list of FAQ is provided?
A: Yes. Microsoft’s TechNet has a complete article on this. Refer to
http://technet.microsoft.com/en-us/library/dd315359.aspx

5. Are there any product specific remoting requirements for products such as SharePoint,

Exchange, and etc?
Yes. For SharePoint 2010 remoting, check Zach Rosenfield’s blog post:
http://sharepoint.microsoft.com/blogs/zach/Lists/Posts/Post.aspx?ID=45

For Exchange 2010 remoting, check Mike’s blog post:
http://www.mikepfeiffer.net/2010/02/managing-exchange-2010-with-remote-powershell/
For Lync Server 2010, check this TechNet blog post:
http://blogs.technet.com/b/csps/archive/2010/08/03/scriptremotedesktopicon.aspx

6. How do | enable unencrypted traffic in a remoting session?

You can do so by changing WSMan attributes on the client end. At an elevated PowerShell
console,
Set-ltem WSMan:\localHost\Client\AllowUnencrypted —Value $true

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

http://technet.microsoft.com/en-us/library/dd315359.aspx
http://sharepoint.microsoft.com/blogs/zach/Lists/Posts/Post.aspx?ID=45
http://blogs.technet.com/b/csps/archive/2010/08/03/scriptremotedesktopicon.aspx

Appendix B: Enable PowerShell remoting using group
policy

Thanks to Jan Egil Ring for contributing this section to the eBook. His blog was probably the first ever to
post detailed steps on how to enable remoting using group policy.

This section will show you how PowerShell remoting can be enabled for Windows Vista, Windows Server
2008 and above. For Windows XP and Windows Server 2003, running Enable-PSRemoting in a
PowerShell startup script would be the best approach.

Group Policy Configuration

Open the Group Policy Management Console from a domain-joined Windows 7 or Windows Server 2008
R2 computer.

Create or use an existing Group Policy Object, open it, and navigate to Computer Configuration-
>Policies->Administrative templates->Windows Components

Here you will find the available Group Policy settings for Windows PowerShell, WinRM and Windows
Remote Shell:

| Windows Powershell
= | Windows Remote Managerment (WinRM)
| WinRM Client
| WinRM Service
| Windows Femote Shel

To enable PowerShell Remoting, the only setting we need to configure are found under “WinRM
Service”, named “Allow automatic configuration of listeners”:

23 Allow automatic configuration of ksteners !Flm
Pt AN Aomat) listeners
] Allow sutomatic configuration of I 4, Next Setting
€ NotConfigured Comment: =]
© Enabled
C Disabled -
Supported on: |Al Teast Windows Vista |
Opticns: Help:
Eovd fiter [Al [This poticy setting allows you to manage whether the Windows |4
[Remote Management (WinfM) service automatically listens on
bov fier: [F the network for requests on the HTTP transport over the default
HTTP port
Syntax
If you enable this poficy setting, the WinfM service automatically
Type ™ to allow messages from any IP address. or listens on the network for requests on the HTTP transport over the
axve the defauit HTTP port.
field empty to listen on no IP address. You can 1 you dissble or do not configure this policy setting. then the
specify one WinRM service does not automatically listen on the network and
ye 5! iy st y g
o puiges ok 15 acdisiads, You must manually create ksteners on every computer,
To aliow WinRM service to receive requests over the network,
E configure the Windows Firewall policy setting with exceptions for
Example 1PV filters: =1 | Port 80 (defauit port for HTTP) and 443 (defauit port for HTTPS)
2.0.0.1-2.0.0.20,24.0.01-240022 "
200.1-200.20.24.00.1 The service listens on the addresses specified by the Il and B\G
filters. [Pvd filter specifies one or more ranges of IPvd addresses
and IPV6 filter specifies one or more ranges of IPv6addresses. If
4 : l,:l specified, the sesvice enumerates the available IP addresses on the
M »
oK I Cancel Apply

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

Enable this policy, and configure the IPv4 and IPv6 addresses to listen on. To configure WinRM to listen
on all addresses, simply use *.

In addition, the WinRM service is by default not started on Windows client operating systems. To
configure the WiIinRM service to start automatically, navigate to Computer
Configuration\Policies\Windows Settings\Security = Settings\System Services\Windows Remote
Management, double-click on Windows Remote Management and configure the service startup mode
to “Automatic”:

Windows Remote Management (WS-Management) Properties [E3

Securty Policy Setting |

'{? Windows Ramote Managemeant [WS-Management)

[V Defire this pobicy sathng
Select service datup mode
+ Automatic
C Marud
" Disabled

Edit Secuiity... I

No other settings need to be configured, however, I've provided screenshots of the other settings so
you can see what's available:

Seleck an item to view its description. Setting

42| Allow aubomatic configuration of ksteners

12| Alowe Barsic authentication

42| Alow urencryphed braffic

12| Disallow Kerberos authentication

i2| Disallows Negotiabe authentication

Sedect an item to view its description, Setting | State

i Allow Basic authentication Not configured
22 Allow unencrypted traffic Not configured
i) Disallow Digest authentication Not configured
2 Disallow Kerberos authentication Not configured
22] Disaliow Negotiate authentication Not configured
iz| Trusted Hosts Not configured

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

http://janegilring.files.wordpress.com/2010/03/image3.png
http://janegilring.files.wordpress.com/2010/03/image3.png
http://janegilring.files.wordpress.com/2010/03/image3.png

B Windows Remote Shell

Select an item to view its description, Setting | State
2| Allow Remote Shell Access Not configured
5| Spedify idle Timeout Not configured
2] MaxConcurrentUsers Not configured
iz| Specify maximum amount of memory in MB per Shell Not configured
2, Specify maximum number of processes per Shell Not configured
7] Specify maximum number of remote shells per user Not configured
2| Specify Shell Timeout Not configured

Sedect an item to view its description, Setting | State |

12| Turn on Scoript Execution Enabled

There is one more thing to configure though; the Windows Firewall.

You need to create a new Inbound Rule under Computer Configuration->Policies->Windows Settings-
>Windows Firewall with Advanced Security->Windows Firewall with Advanced Security->Inbound Rules:

A Computer Configuration
= | Pokies
¢ . Software Settings
= . Windows Settings
. Name Resolution Policy
il Seripks (Startup/Shutdown)
= Security Settings
3 Accounk Polcies
& Local Pobicies
& Evertlog
g Restricted Groups
A System Services
a Regstry
Fle System
| [} Wired Network (IEEE 802.3) Polcies
= | Windows Firewal with Advanced Securky
= i Windows Frewall with Advanced Security

CRORCRCRCRCRCED

Y Outbound Rules
#a. Connection Securky Rules

The WinRM port numbers are predefined as “Windows Remote Management”:

m A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

http://janegilring.files.wordpress.com/2010/03/image4.png
http://janegilring.files.wordpress.com/2010/03/image5.png
http://janegilring.files.wordpress.com/2010/03/image6.png
http://janegilring.files.wordpress.com/2010/03/image4.png
http://janegilring.files.wordpress.com/2010/03/image5.png
http://janegilring.files.wordpress.com/2010/03/image6.png
http://janegilring.files.wordpress.com/2010/03/image4.png
http://janegilring.files.wordpress.com/2010/03/image5.png
http://janegilring.files.wordpress.com/2010/03/image6.png

® New Inbound Rule Wizard E3|]
Rule Type
Select the type of frewall nde o creste.

Steps:
+ RueType \What type of e would you ke lo create?
@ Predafned Rues
@ Action Program
Rule that conteols connections for & program.
 Port
Rude that controls cornechons for a TCP or UDP port.

nwmmmhawmw

" Custom
Custom rue.

With WinRM 2.0, the default http listener port changed from TCP 80 to TCP 5985. The old port number

are a part of the predefined scope for compatibility reasons, and may be excluded if you don't have any
legacy WinRM 1.1 listeners.

[Frewinboundruieweard @]

Predefined Rules

Sebecd the ruis 1o be craated fot this expatiance.

Steps:

& Pus Type ‘Which s would you Bke bo crests 7

2 Predefined Aules The fobowing naes defre retwotk correctivity reguissmenis for the selected predefined group.

Act Frudes that aie checked wil be cissted If & nuls skeady sdsts and it checked, the cortents of

® Action thee esasting e vell b crvenvmiten,
Rulas:
Hame | _FRue Exisls |_Paofils
DWndow: Remate Management - Compatitdly Mods [HTTFn) Mo a1
] windowe: Rlemote Maragement (HT TR4R] Ho o
e — | Ui
Lotaim e sl preefines] ndes

cBack | Hear Carcel |

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

http://blogs.msdn.com/wmi/archive/2009/07/22/new-default-ports-for-ws-management-and-powershell-remoting.aspx
http://janegilring.files.wordpress.com/2010/03/image7.png
http://janegilring.files.wordpress.com/2010/03/image8.png
http://janegilring.files.wordpress.com/2010/03/image7.png
http://janegilring.files.wordpress.com/2010/03/image8.png

* New Inbound Rule Wizard =1}

Action
Speciy the action to be 1aken when a connaction matches the conditions specified in the nae.

Steps:
@ Rue Type
@ Predefined Rues

‘What action should be taken when 2 hes the specied

= Allow the connection
< Action Thiz inchudes connections that are peotected with IPsec as wed a3 those are not
" Allow the connection i it is secure
Thes inchades ooy bhons that have b ¥ g IPsec. C
#ﬁhmdmh%nlmmwmhhmsm
node.

|

" Block the connection

Bock [Fwh | Cancel |

When the rule are created, you may choose to make further restrictions, i.e. to only allow the IP
addresses of your management subnet, or perhaps some specific user groups:

Windows Remole Management (HTTP-In) Progerties

Gereial | Progeams and Senices | Compuers |
Protocek: ard Perts Scope | Advanced | Usen
[~ Local IF sdckess

b & anylP sddess
7 Thess IP sddreszas:

I

[~ Remote IP addess
A AylP sddess
& ThessIP sddesses
10000024

il

Co] oot |_aow |

Now that the firewall rules are configured, we are done with the minimal configuration to enable
PowerShell Remoting using Group Policy.

A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

http://janegilring.files.wordpress.com/2010/03/image9.png
http://janegilring.files.wordpress.com/2010/03/image10.png
http://janegilring.files.wordpress.com/2010/03/image9.png
http://janegilring.files.wordpress.com/2010/03/image10.png

Harme | Group = | Profie |Enabled | Action | Override | Progam | Locel Address | Remote Address | Protoced | LecelPort |
C We'rationsss Reioobe Mansgerment (MTTR=In) Wordoess Remmols Mansgeisnt &0 as A Mo Cshem Arey 1000.0.0/24, ... TCP SRR

On a computer affected by the newly configured Group Policy Object, run gpupdate and see if the
settings were applied:

I Admimistrator: Windows PowerShell

FelB: Sefe:lB.B.0.14x12. FelB:z121:cV93 2k
641587088

lacalk gnarsLiztensr 641587888

As you can see, the listener indicates “Source*”GP0O”, meaning it was configured from a Group Policy
Object.

When the GPO has been applied to all the affected computers you are ready to test the configuration.

Here is a sample usage of PowerShell Remoting combined with the Active Directory-module for

Windows PowerShell:

" O

o 2
o}

8

H

»

[
[+
5 oot

m v
on0

(Scomputer in

Netlogon |

You can also use the Test-PSremoting (http://www.leeholmes.com/blog/2009/11/20/testing-for-
powershell-remoting-test-psremoting/) script by Lee Holmes to verify that PS remoting is enabled on

remote systems.

m A layman’s guide to PowerShell remoting | http://www.ravichaganti.com/blog

http://www.leeholmes.com/blog/2009/11/20/testing-for-powershell-remoting-test-psremoting/
http://www.leeholmes.com/blog/2009/11/20/testing-for-powershell-remoting-test-psremoting/
http://janegilring.files.wordpress.com/2010/03/image11.png
http://janegilring.files.wordpress.com/2010/03/image12.png
http://janegilring.files.wordpress.com/2010/03/image13.png
http://janegilring.files.wordpress.com/2010/03/image11.png
http://janegilring.files.wordpress.com/2010/03/image12.png
http://janegilring.files.wordpress.com/2010/03/image13.png
http://janegilring.files.wordpress.com/2010/03/image11.png
http://janegilring.files.wordpress.com/2010/03/image12.png
http://janegilring.files.wordpress.com/2010/03/image13.png

